Capitulo 39: Circulación pulmonar, liquido pleural.

1: circulación pulmonar y circulación sistémica. | Download Scientific  Diagram

El pulmón tiene dos circulaciones: una circulación de bajo flujo y alta presión y una circulación de alto flujo y baja presión. La circulación de bajo flujo y alta presión aporta la sangre arterial sistémica a la tráquea, el árbol bronquial incluidos los bronquíolos terminales, los tejidos de sostén del pulmón y las capas exteriores (adventicias) de las arterias y venas pulmonares.

Las arterias bronquialesque son ramas de la aorta torácica, irrigan la mayoría de esta sangre arterial sistémica a una presión solo ligeramente inferior a la presión aórtica. 

La circulación de alto flujo y baja presión que suministra la sangre venosa de todas las partes del organismo a los capilares alveolares en los que se añade el oxígeno (O2) y se extrae el dióxido de carbono (CO2). 

La arteria pulmonar, que recibe sangre del ventrículo derecho, y sus ramas arteriales transportan sangre a los capilares alveolares para el intercambio gaseoso y a las venas pulmonares y después devuelven la sangre a la aurícula izquierda para su bombeo por el ventrículo izquierdo a través de la circulación sistémica.

VASOS PULMONARES

genomasur

La arteria pulmonar se extiende solo 5 cm más allá de la punta del ventrículo derecho y después se divide en las ramas principales derecha e izquierda, que vascularizan los dos pulmones correspondientes.

La arteria pulmonar tiene un grosor de pared un tercio del de la aorta. Las ramas de las arterias pulmonares son cortas, y todas las arterias pulmonares, incluso las arterias más pequeñas y las arteriolas, tienen diámetros mayores que sus correspondientes arterias sistémicas. Este aspecto, combinado con el hecho de que los vasos son delgados y distensibles, da al árbol arterial pulmonar una gran distensibilidad, que es en promedio de casi 7 ml/mmHg, que es similar a la de todo el árbol arterial sistémico.

VASOS BRONQUIALES

Pulmón (ser humano) - Magnaplus

La sangre también fluye hacia los pulmones a través de arterias bronquiales pequeñas que se originan en la circulación sistémica y transportan el 1-2% del gasto cardíaco total. Esta sangre arterial bronquial es sangre oxigenada, al contrario de la sangre parcialmente desoxigenada de las arterias pulmonares. Vascularizan los tejidos de soporte de los pulmones, como el tejido conjuntivo, los tabiques y los bronquios grandes y pequeños.

LINFÁTICOS

Hay vasos linfáticos en todos los tejidos de soporte del pulmón, comenzando en los espacios tisulares conjuntivos que rodean a los bronquíolos terminales, y siguiendo hacia el hilio del pulmón, y desde aquí principalmente hacia el conducto linfático torácico derecho.

CURSO DE PRESIÓN DEL VENTRÍCULO DERECHO

Estas curvas se comparan con la curva de presión aórtica, que es mucho más elevada, y que se muestra en la porción superior de la figura. La presión sistólica del ventrículo derecho del ser humano normal es en promedio de aproximadamente 25 mmHg, y la presión diastólica es en promedio de aproximadamente 0 a 1 mmHg, valores que son solo un quinto de los del ventrículo izquierdo.

PRESIONES EN LA ARTERIA PULMONAR

Hipertensión Pulmonar - ¿Qué es? - La web de las Cardiopatías Congénitas

Durante la sístole la presión en la arteria pulmonar es esencialmente igual a la presión que hay en el ventrículo derecho, como también se muestra en la figura 39-1. Sin embargo, después del cierre de la válvula pulmonar al final de la sístole, la presión ventricular cae súbitamente, mientras que la presión arterial pulmonar disminuye más lentamente a medida que la sangre fluye a través de los capilares de los pulmones.

PRESIONES AURICULAR IZQUIERDA Y VENOSA PULMONAR

Gasto cardíaco - Wikiwand

La presión media en la aurícula izquierda y en las venas pulmonares principales es en promedio de aproximadamente 2 mmHg en el ser humano en decúbito, y varía desde un valor tan bajo como 1 mmHg hasta uno tan elevado como 5 mmHg.

Habitualmente no es posible medir la presión auricular izquierda de un ser humano utilizando un dispositivo de medida directa porque es difícil introducir un catéter a través de las cavidades cardíacas hacia la aurícula izquierda. Sin embargo, con frecuencia se puede estimar la presión auricular izquierda con una exactitud moderada midiendo la denominada presión de enclavamiento pulmonar

VOLUMEN SANGUÍNEO DE LOS PULMONES

Diferencias entre la circulación mayor y menor - Diferenciador

El volumen de la sangre de los pulmones es de aproximadamente 450 ml, aproximadamente el 9% del volumen de sangre total de todo el aparato circulatorio. Aproximadamente 70 ml de este volumen de sangre pulmonar están en los capilares pulmonares, y el resto se divide aproximadamente por igual entre las arterias y las venas pulmonares.

LOS PULMONES SIRVEN COMO RESERVORIO DE SANGRE

En varias situaciones fisiológicas y patológicas la cantidad de sangre de los pulmones puede variar desde tan poco como la mitad del valor normal hasta el doble de lo normal. Por ejemplo, cuando una persona sopla aire con tanta intensidad que se genera una presión elevada en los pulmones (como cuando se toca una trompeta), se pueden expulsar hasta 250 ml de sangre desde el aparato circulatorio pulmonar hacia la circulación sistémica.

LA PATOLOGÍA CARDÍACA PUEDE DESPLAZAR SANGRE DESDE LA CIRCULACIÓN SISTÉMICA A LA CIRCULACIÓN PULMONAR

La insuficiencia del lado izquierdo del corazón o el aumento de la resistencia al flujo sanguíneo a través de la válvula mitral como consecuencia de una estenosis mitral o una insuficiencia mitral hace que la sangre quede estancada en la circulación pulmonar, aumentando a veces el volumen de sangre pulmonar hasta un 100% y produciendo grandes aumentos de las presiones vasculares pulmonares.

Dado que el volumen de la circulación sistémica es aproximadamente nueve veces el de la circulación pulmonar, el desplazamiento de sangre desde un sistema hacia el otro afecta mucho al sistema pulmonar, pero habitualmente tiene solo efectos circulatorios sistémicos leves.

LA DISMINUCIÓN DEL OXÍGENO ALVEOLAR REDUCE EL FLUJO SANGUÍNEO ALVEOLAR LOCAL Y REGULA LA DISTRIBUCIÓN DEL FLUJO SANGUÍNEO PULMONAR

El flujo sanguíneo se reorganiza en respuesta a las necesidades — Cuaderno  de Cultura Científica

Cuando la concentración de O2 en el aire de los alvéolos disminuye por debajo de lo normal (especialmente cuando disminuye por debajo del 70% de lo normal [es decir, por debajo de 73 mmHg de Po2]) los vasos sanguíneos adyacentes se constriñen, con un aumento de la resistencia vascular de más de cinco veces a concentraciones de O2 muy bajas.

Este efecto es opuesto al efecto que se observa en los vasos sistémicos, que se dilatan en lugar de constreñirse en respuesta a concentraciones bajas de O2.

Aunque los mecanismos que promueven la vasoconstricción pulmonar durante la hipoxia no se conocen en profundidad, la baja concentración de O2 puede estimular la liberación de sustancias vasoconstrictoras o reducir la liberación de un vasodilatador, como el óxido nítrico, del tejido pulmonar.

EFECTO DE LOS GRADIENTES DE PRESIÓN HIDROSTÁTICA DE LOS PULMONES SOBRE EL FLUJO SANGUÍNEO PULMONAR REGIONAL

La presión arterial en el pie de una persona que está de pie puede ser hasta 90 mmHg mayor que la presión a nivel del corazón. Esta diferencia está producida por la presión hidrostática, es decir, el peso de la propia sangre en los vasos sanguíneos. El mismo efecto, aunque en un grado menor, ocurre en los pulmones.

En el adulto en posición erguida el punto más bajo de los pulmones está normalmente unos 30 cm por debajo del punto más alto, lo que representa una diferencia de presión de 23 mmHg, de los cuales aproximadamente 15 mmHg están por encima del corazón y 8 por debajo. Es decir, la presión arterial pulmonar en la porción más elevada del pulmón de una persona que está de pie es aproximadamente 15 mmHg menor que la presión arterial pulmonar a nivel del corazón, y la presión en la porción más inferior de los pulmones es aproximadamente 8 mmHg mayor.

ZONAS 1, 2 Y 3 DEL FLUJO SANGUÍNEO PULMONAR

Los capilares de las paredes alveolares están distendidos por la presión de la sangre que hay en su interior, pero simultáneamente están comprimidos por la presión del aire alveolar que está en su exterior. Por tanto, siempre que la presión del aire alveolar pulmonar sea mayor que la presión de la sangre capilar, los capilares se cierran y no hay flujo sanguíneo. En diferentes situaciones normales y patológicas se puede encontrar una cualquiera de tres posibles zonas (patrones) del flujo sanguíneo pulmonar, como se señala a continuación:

Zona 1: ausencia de flujo durante todas las porciones del ciclo cardíaco porque la presión capilar alveolar local en esa zona del pulmón nunca aumenta por encima de la presión del aire alveolar en ninguna fase del ciclo cardíaco.

Zona 2: flujo sanguíneo intermitente, solo durante los picos de presión arterial pulmonar, porque la presión sistólica en ese momento es mayor que la presión del aire alveolar, pero la presión diastólica es menor que la presión del aire alveolar.

Zona 3: flujo de sangre continuo, porque la presión capilar alveolar es mayor que la presión del aire alveolar durante todo el ciclo cardíaco.

EL FLUJO SANGUÍNEO DE ZONA 1 SOLO SE PRODUCE EN SITUACIONES ANORMALES

El flujo sanguíneo de zona 1, que indica la ausencia de flujo durante todo el ciclo cardíaco, se produce cuando la presión arterial sistólica pulmonar es demasiado baja o cuando la presión alveolar es demasiado elevada para permitir que haya flujo. Por ejemplo, si una persona en posición erguida está respirando contra una presión aérea positiva de modo que la presión del aire intraalveolar es al menos 10 mmHg mayor de lo normal, pero la presión sanguínea sistólica pulmonar es normal, se puede esperar que se produzca flujo sanguíneo de zona 1 (ausencia de flujo sanguíneo) en los vértices pulmonares. 

EL AUMENTO DEL GASTO CARDÍACO DURANTE EL EJERCICIO INTENSO ASUMIDO NORMALMENTE POR LA CIRCULACIÓN PULMONAR SIN GRANDES AUMENTOS EN LA PRESIÓN ARTERIAL PULMONAR

Gasto Cardíaco

Durante el ejercicio intenso el flujo sanguíneo a través de los pulmones puede aumentar entre cuatro y siete veces. Este flujo adicional se acomoda en los pulmones de tres formas:

1) aumentando el número de capilares abiertos, a veces hasta tres veces.

2) distendiendo todos los capilares y aumentando la velocidad del flujo a través de cada capilar a más del doble.

3) aumentando la presión arterial pulmonar.

FUNCIÓN DE LA CIRCULACIÓN PULMONAR CUANDO LA PRESIÓN AURICULAR IZQUIERDA SE ELEVA COMO CONSECUENCIA DE UNA INSUFICIENCIA CARDÍACA IZQUIERDA

CONCEPTO DE PRECARGA Y POSCARGA... - Fundamentos De Medicina y Enfermería |  Facebook

La presión auricular izquierda de una persona sana casi nunca se eleva por encima de +6 mmHg, incluso durante el ejercicio más intenso. Estas pequeñas modificaciones de la presión auricular izquierda prácticamente no tienen ningún efecto sobre la función de la circulación pulmonar porque simplemente expanden las vénulas pulmonares y abren más capilares, de modo que la sangre sigue fluyendo con una facilidad casi igual desde las arterias pulmonares.

Sin embargo, cuando se produce insuficiencia del lado izquierdo del corazón la sangre comienza a acumularse en la aurícula izquierda. Como consecuencia, la presión auricular izquierda puede aumentar de manera ocasional desde su valor normal de 1 a 5 mmHg hasta 40 a 50 mmHg. La elevación inicial de la presión auricular, de hasta aproximadamente 7 mmHg, tiene poco efecto sobre la función de la circulación pulmonar.

Sin embargo, cuando la presión auricular izquierda aumenta a más de 7 u 8 mmHg, aumentos adicionales de la presión auricular izquierda producen aumentos casi igual de grandes de la presión arterial pulmonar, generando de esta manera un aumento asociado de la carga del corazón derecho.

DINÁMICA CAPILAR PULMONAR

El intercambio de gases entre el aire alveolar y la sangre capilar pulmonar se analiza en el capítulo 40. Sin embargo, es importante señalar aquí que las paredes alveolares están tapizadas por tantos capilares que en la mayor parte de los sitios los capilares casi se tocan entre sí, adosados unos a otros. Por tanto, con frecuencia se dice que la sangre capilar fluye en las paredes alveolares como una «lámina de flujo», y no como capilares individuales.

INTERCAMBIO CAPILAR DE LÍQUIDO EN LOS PULMONES Y DINÁMICA DEL LÍQUIDO INTERSTICIAL PULMONAR

Capitulo 4.- Fisologia Respiratoria | Fisiologia Básica Aplicada

La dinámica del intercambio de líquido a través de las membranas capilares pulmonares escualitativamente la misma que en los tejidos periféricos. Sin embargo, cuantitativamente hay diferencias importantes, como se señala a continuación:

1. La presión capilar pulmonar es baja, de aproximadamente 7 mmHg, en comparación con una presión capilar funcional mucho mayor en los tejidos periféricos, de aproximadamente 17 mmHg.

2. La presión del líquido intersticial del pulmón es ligeramente más negativa que en el tejido subcutáneo periférico. (Esta presión se ha medido de dos formas: con una micropipeta insertada en el intersticio pulmonar, que da un valor de aproximadamente –5 mmHg, y midiendo la presión de absorción de líquido desde los alvéolos, que da un valor de aproximadamente –8 mmHg.)

3. La presión coloidosmótica del líquido intersticial pulmonar es de aproximadamente 14 mmHg, en comparación con menos de la mitad de este valor en los tejidos periféricos.

4. Las paredes alveolares son muy delgadas, y el epitelio alveolar que recubre las superficies alveolares es tan débil que se puede romper si la presión positiva en los espacios intersticiales es mayor que la presión del aire alveolar (>0 mmHg), lo que permite el paso de líquido desde los espacios intersticiales hacia los alvéolos.

EDEMA PULMONAR

El edema pulmonar se produce de la misma forma en que se produce el edema en cualquier otra localización del cuerpo. Cualquier factor que aumente la filtración de líquido fuera de los capilares pulmonares o que impida la función linfática pulmonar y provoque un aumento de la presión del líquido intersticial pulmonar desde el intervalo negativo hasta el intervalo positivo dará lugar al llenado rápido de los espacios intersticiales pulmonares y de los alvéolos con grandes cantidades de líquido libre.

Las causas más frecuentes de edema pulmonar son:

  1. Insuficiencia cardíaca izquierda o valvulopatía mitral, con los consiguientes grandes aumentos de lapresión venosa pulmonar y de la presión capilar pulmonar y el encharcamiento de los espaciosintersticiales y de los alvéolos.
  2. La lesión de las membranas de los capilares sanguíneos pulmonares producida por infecciones comola neumonía o por la inhalación de sustancias tóxicas como el gas cloro o el gas dióxido de azufre. Cada uno de estos mecanismos da lugar a una fuga rápida tanto de proteínas plasmáticas como de líquido desde los capilares hacia los espacios intersticiales pulmonares y los alvéolos.

LIQUIDO EN LA CAVIDAD PLEURAL

Pleura Del Pulmón Y Cavidad Pleural Ilustración del Vector - Ilustración de  pulmón, cavidad: 26835277

Cuando los pulmones se expanden y se contraen durante la respiración normal se deslizan en el interior de la cavidad pleural. Para facilitar este movimiento hay una delgada capa de líquido mucoide entre las pleuras parietal y visceral.

La membrana pleural es una membrana serosa mesenquimatosa porosa a través de la cual trasudan continuamente pequeñas cantidades de líquido intersticial hacia el espacio pleural. Estos líquidos arrastran con ellos proteínas tisulares, lo que da al líquido pleural una característica mucoide, que es lo que permite el deslizamiento muy fácil de los pulmones en movimiento.

PRESIÓN NEGATIVA EN EL LÍQUIDO PLEURAL

Siempre es necesaria una fuerza negativa en el exterior de los pulmones para mantener expandidos los pulmones. Esta fuerza es proporcionada por la presión negativa del espacio pleural normal.

La causa básica de esta presión negativa es el bombeo de líquidos desde el espacio pleural por los linfáticos (que también es la base de la presión negativa que se encuentra en la mayor parte de los espacios tisulares del cuerpo).

Como la tendencia al colapso normal de los pulmones es de aproximadamente –4 mmHg, la presión del líquido pleural siempre debe ser al menos tan negativa como –4 mmHg para mantener expandidos los pulmones. 

DERRAME PLEURAL: ACUMULACIÓN DE GRANDES CANTIDADES DE LÍQUIDO LIBRE EN EL ESPACIO PLEURAL

Derrame pleural: qué es, síntomas, causas, prevención y tratamiento | Top  Doctors

El derrame es análogo al líquido de edema en los tejidos y se puede denominar «edema de la cavidad pleural». Las causas del derrame son las mismas que las causas del edema en otros tejidos, entre ellas:

1) bloqueo del drenaje linfático desde la cavidad pleural.

2) insuficiencia cardíaca, que da lugar a unas presiones capilares periférica y pulmonar excesivamente altas, que dan lugar a una trasudación excesiva de líquido hacia la cavidad pleural.

3) marcada reducción de la presión osmótica coloidal del plasma, que permite una trasudación excesiva de líquidos.

y 4) infección o cualquier otra causa de inflamación de las superficies de la cavidad pleural, que aumenta la permeabilidad de las membranas capilares y permite la salida rápida tanto de proteínas plasmáticas como de líquido hacia la cavidad

Deja un comentario

Diseña un sitio como este con WordPress.com
Comenzar